skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chen, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to their large sizes, volumetric scans and whole-slide pathology images (WSIs) are often processed by extracting embeddings from local regions and then an aggregator makes predictions from this set. However, current methods require post-hoc visualization techniques (e.g., Grad-CAM) and often fail to localize small yet clinically crucial details. To address these limitations, we introduce INSIGHT, a novel weakly-supervised aggregator that integrates heatmap generation as an inductive bias. Starting from pre-trained feature maps, INSIGHT employs a detection module with small convolutional kernels to capture fine details and a context module with a broader receptive field to suppress local false positives. The resulting internal heatmap highlights diagnostically relevant regions. On CT and WSI benchmarks, INSIGHT achieves state-of-the-art classification results and high weakly-labeled semantic segmentation performance. 
    more » « less
  2. By providing a large gaseous volume for nuclear interactions while simultaneously recording the tracks of resulting reaction products, an active target serves as both a thick target and a detector. Once a reaction occurs, the emitted charged fragments strip electrons from the target gas along their path as they transverse the detector. Collection of these stripped electrons allow for detection of the product tracks. As beam intensity increases, the resulting ionization in the active target can significantly distort this collection of electrons. If left uncorrected, the resulting measurements could be wrong. In this paper, we investigate the impact of the space charge produced by heavy radioactive beams within the Active Target - Time Projection Chamber at Michigan State University. The beams are injected parallel to the electric field of the time projection chamber which is operated without a magnetic field for this experiment. We analyze the rate dependence of the space charge effects and demonstrate that they can be modeled and effectively corrected. 
    more » « less
  3. Abstract Linear magnetic anomalies (LMA), resulting from Earth's magnetic field reversals recorded by seafloor spreading serve as crucial evidence for oceanic crust formation and plate tectonics. Traditionally, LMA analysis relies on visual inspection and manual interpretation, which can be subject to biases due to the complexities of the tectonic history, uneven data coverage, and strong local anomalies associated with seamounts and fracture zones. In this study, we present a Machine learning (ML)‐based framework to identify LMA, determine their orientations and distinguish spatial patterns across oceans. The framework consists of three stages and is semi‐automated, scalable and unbiased. First, a generation network produces artificial yet realistic magnetic anomalies based on user‐specified conditions of linearity and orientation, addressing the scarcity of the labeled training dataset for supervised ML approaches. Second, a characterization network is trained on these generated magnetic anomalies to identify LMA and their orientations. Third, the detected LMA features are clustered into groups based on predicted orientations, revealing underlying spatial patterns, which are directly related to propagating ridges and tectonic activity. The application of this framework to magnetic data from seven areas in the Atlantic and Pacific oceans aligns well with established magnetic lineations and geological features, such as the Mid‐Atlantic Ridge, Reykjanes Ridge, Galapagos Spreading Center, Shatsky Rise, Juan de Fuca Ridge and even Easter Microplate and Galapagos hotspot. The proposed framework establishes a solid foundation for future data‐driven marine magnetic analyses and facilitates objective and quantitative geological interpretation, thus offering the potential to enhance our understanding of oceanic crust formation. 
    more » « less
  4. Large Language Models (LLMs) have achieved remarkable success in natural language tasks, yet understanding their reasoning processes re- mains a significant challenge. We address this by introducing XplainLLM, a dataset accom- panying an explanation framework designed to enhance LLM transparency and reliability. Our dataset comprises 24,204 instances where each instance interprets the LLM’s reasoning behavior using knowledge graphs (KGs) and graph attention networks (GAT), and includes explanations of LLMs such as the decoder- only Llama-3 and the encoder-only RoBERTa. XplainLLM also features a framework for gener- ating grounded explanations and the debugger- scores for multidimensional quality analysis. Our explanations include why-choose and why- not-choose components, reason-elements, and debugger-scores that collectively illuminate the LLM’s reasoning behavior. Our evaluations demonstrate XplainLLM’s potential to reduce hallucinations and improve grounded explana- tion generation in LLMs. XplainLLM is a re- source for researchers and practitioners to build trust and verify the reliability of LLM outputs. Our code and dataset are publicly available. 
    more » « less